Modeling lower critical solution temperature behavior of associating polymer brushes with classical density functional theory.
نویسندگان
چکیده
We study the lower critical solution temperature (LCST) behavior of associating polymer brushes (i.e., poly(N-isopropylacrylamide)) using classical density functional theory. Without using any empirical or temperature-dependent parameters, we find the phase transition of polymer brushes from extended to collapsed structure with increasing temperature, indicating the LCST behavior of polymer brushes. The LCST behavior of associating polymer brushes is attributed to the interplay of hydrogen bonding interactions and Lennard-Jones attractions in the system. The effect of grafting density and molecular weight on the phase behavior of associating polymer brushes has been also investigated. We find no LCST behavior at low grafting density or molecular weight. Moreover, increasing grafting density decreases the LCST and swelling ratio of polymer brushes. Similarly, increasing molecular weight decreases the LCST but increases the swelling ratio. At very high grafting density, a partial collapsed structure appears near the LCST. Qualitatively consistent with experiments, our results provide insight into the molecular mechanism of LCST behavior of associating polymer brushes.
منابع مشابه
The Conformation of Thermoresponsive Polymer Brushes Probed by Optical Reflectivity.
We describe a microscope-based optical setup that allows us to perform space- and time-resolved measurements of the spectral reflectance of transparent substrates coated with ultrathin films. This technique is applied to investigate the behavior in water of thermosensitive polymer brushes made of poly(N-isopropylacrylamide) grafted on glass. We show that spectral reflectance measurements yield ...
متن کاملProtein Adsorption Modes Determine Reversible Cell Attachment on Poly(Nisopropyl acrylamide) Brushes
Protein adsorption and reversible cell attachment are investigated as a function of the grafting density of poly( Nisopropyl acrylamide) (PNIPAM) brushes. Prior studies demonstrated that the thermally driven collapse of grafted PNIPAM above the lower critical solution temperature of 32 ° C is not required for protein adsorption. Here, the dependence of reversible, proteinmediated cell adhesion ...
متن کاملSurface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.
The colloidal stability and thermoresponsive behavior of poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals (CNCs) of varying graft densities and molecular weights was investigated. Indication of the grafted polymer brushes was obtained after AFM imaging of CNCs adsorbed on silica. Also, aggregation of the nanoparticles carrying grafts of high degree of polymerization was o...
متن کاملModeling Solubility Behavior of CO2 in [C2-mim][BF4] and [C4-mim][BF4] Ionic Liquids by sPC-SAFT Equation of State
The simplified perturbed chain statistical associating fluid theory (sPC-SAFT) Equation of State (EOS) was proposed to describe the thermodynamic properties of pure ionic liquids (ILs). A set of sPC-SAFT parameters for 2 ILs was obtained by fitting the experimental liquid densities data over a wide range of temperature at atmospheric pressure. Good agreement with experimental density data was o...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 139 9 شماره
صفحات -
تاریخ انتشار 2013